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THREE POINT CHARGES ON A FLEXIBLE CONTOUR

Giorgadze G., Khimshiashvili G., Murusidze I.

Abstract. Equilibrium configurations of three mutually repelling point charges
confined to a flexible contour of fixed length are discussed. For given values of
charges and perimeter, we compute all possible equilibrium configurations and
critical values of Coulomb energy. Moreover, for any triangle with the given
perimeter, we compute the values of three charges such that this triangle is con-
gruent to their equilibrium configuration in isoperimetric setting.
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Introduction

We deal with equilibrium configurations of three mutually repelling point
charges confined to a flexible contour of fixed length L. For definiteness, in the
sequel we assume that all charges are positive. This problem was formulated in
[1] as an analog of the isoperimetric problem for interacting particles studied by
P.Exner [2]. In the setting of [1], it is known that equilibrium configurations are
realized either by a triangle of perimeter L or by aligned configurations, where
all charges belong to a line segment of length L/2 [1]. In this paper we aim
at describing the exact shapes of equilibrium configurations and consider this
problem in the context of an appropriate configuration space.

Namely, for any four positive numbers (q1, q2, q3;L) we study the problem
E(Q;L) (Q = (q1, q2, q3)) rigorous formulation of which is given below. To this
end we consider the set of L-isoperimetric triangles △(L) consisting of all triples
of points (p1, p2, p3) in the plane such that not all of these points coincide and the
perimeter of triangle △p1p2p3 is equal to L. The configuration space Per3(L) is
defined as the factor-space of △(L) over the natural diagonal action of the group
Iso+(R2) consisting of all orientation preserving isometries of the plane. It is
known that Per3(L) can be naturally identified with the complex projective line
CP1 (see, e.g., [3]). So one can endow it with a smooth structure and Riemannian
metric inherited from CP1 and consider Per3(L) as a two-dimensional orientable
Riemannian compact smooth manifold isometrically diffeomorphic to the two-
dimensional unit sphere S2 in three-dimensional Euclidean space.

Notice that there is a natural involution S on Per3(L) which changes the
orientation of the triangle △p1p2p3 by changing the order of any two vertices,
i.e. acts as transposition of indices. Obviously, the fixed points of S in Per3(L)
consist of degenerate (aligned) triangles with all vertices on one line. It is easy
to check that the set FixS of all fixed points of S is represented by a simple loop
(non-intersecting smooth closed curve) Y in Per3(L).

Remark 1. It can be shown that Y is a metric circle with respect to the
Riemannian metric induced on Per3(L) from the Fubini-Study metric on CP1.
We will not use the latter fact in the sequel.
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Notice also that Per3(L) contains two distinguished points N,S correspond-
ing to a regular triangle of perimeter L taken with the positive and negative ori-
entations, respectively. Moreover, for any L > 0, Per3(L) contains three points
A1, A2, A3 corresponding to three degenerate triangles of perimeter L with two
coinciding vertices. In our notation A1 corresponds to coinciding p2 and p3, and
analogously for A2, A3. Obviously, points A1, A2, A3 belong to the loop Y = FixS
defined above.

For any triple of pairwise distinct points P = (p1, p2, p3) in the plane, the
(normalized) Coulomb potential of charges (q1, q2, q3) placed at p1, p2, p3 is defined
as

E(Q,P ) =
q1q2
d12

+
q2q3
d23

+
q1q3
d13

, (1)

where dij is the distance between pi and pj . This function is obviously invariant
with respect to the mentioned isometric action of Iso+(R2) on △(L) so it de-
fines a smooth function E on an open subspace X = Per3(L) − {A1, A2, A3} of
configurations consisting of pairwise distinct points.

Since E is a smooth function on X one may consider its critical points and
interpret them as the equilibrium configurations of given charges confined to
a flexible contour of length L. Accepting terminology used in [1] the problem
E(Q;L) will be referred to as direct problem of electrostatics (DPE) in isoperi-
metric setting.

Conversely, given a triangle △ABC with perimeter L one may wonder if there
exist values of charges which will be in equilibrium if placed at vertices of △ABC.
Any three non-zero numbers satisfying this requirement are called stationary
charges for △ABC. By analogy with [1] the problem of finding stationary charges
is called the inverse problem of electrostatics (IPE) in isoperimetric setting. In
the sequel we present complete solutions of these two problems for configurations
of three charges and some corollaries of the main results.

1. Isoperimetric equilibria of three charges

To find all critical points of E in isoperimetric setting we need a few more
definitions. For each i = 1, 2, 3, an aligned solution τi to the problem E(Q;L) is
defined as the following configuration of point charges: charges qj and qk (here
i, j, k is a cyclic permutation of the numbers 1, 2, 3) are at the ends of line segment
Ii of length L/2 and the charge qi placed in this segment at such point ti that
qi is in equilibrium in Ii in the electric field created by the end-point charges qj
and qk (here i, j, k is a cyclic permutation of indices 1, 2, 3). It is easy to verify
that the signed distance between qi and the charge qj equals

zi =
qj −

√
qjqk

2(qj − qk)
L.

Notice that each configuration τi is a particular case of the mathematical model
of linear ion trap considered in [4].

A point in Per3(L) corresponding to the configuration τi is denoted by Ti. It is
easy to verify that, for each i = 1, 2, 3, Ti is a critical point of E in X. Obviously,
each Ti belongs to the loop Y introduced above. Physical considerations show
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that Ti should be of saddle-point type: stable within the segment Ii and non-
stable in the transversal direction. In fact, a direct computation of the hessian
matrix of E at Ti given in [4] shows that Ti is a (Morse) non-degenerate critical
point of Morse index one, i.e., Ti is indeed a non-degenerate saddle point of E in
X. It is then easy to verify that Y does not contain critical points of E different
from T1, T2, T3 because any other position of the interior charge in the segment is
not stationary within this segment. This follows from the results of [5] and can
be verified by direct computation of the differential of E.

Since critical points T1, T2, T3 are non-stable, physical considerations show
that X should also contain at least one point M , where E has a minimum, and
M has a shape of non-degenerate triangle. To find the exact shape of M we use a
version of Lagrange multipliers method described below. Because of S-invariance
of E it is clear that the non-degenerate critical points of E come in pairs. Since
the minimum should have a shape of non-degenerate triangle there should be at
least two such minima differing only by orientation. To find the possible shapes
of critical triangles of E let us denote by li the lengths of the sides of a critical
triangle. We are going to use a version of Lagrange multipliers method adjusted
to the context of configuration space Per3(L).

Coulomb energy takes the form

E =
q1q2
l3

+
q2q3
l1

+
q1q3
l2

.

As we know, Coulomb energy E is invariant with respect to involution S on X
introduced above. It follows that its differential dE at any point of Y vanishes on
the direction (tangent vectors) orthogonal to the tangent line of Y in X. For this
reason, to apply the Lagrange multipliers method correctly we should separately
consider two cases: points in X − Y and points in Y .

Under the assumption that a point does not belong to Y we have to solve a
regular constrained optimization problem with target function E and one con-
straint l1 + l2 + l3 = L. Using the standard form of Lagrange multipliers method
one easily finds out that there exists exactly one possible triple of lengths of the
sides of critical triangle which are given by the following formulas:

l1 =
L
√
q2q3√

q1q2 +
√
q2q3 +

√
q1q3

, l2 =
L
√
q1q3√

q1q2 +
√
q2q3 +

√
q1q3

,

l3 =
L
√
q1q2√

q1q2 +
√
q2q3 +

√
q1q3

. (2)

Assuming that a point under inspection belongs to Y , i.e., it is a fixed point of
involution S, we have to use a version of Lagrange multipliers method applicable
to functions invariant with respect to involution. This implies that at fixed points
of S we have to search for critical points of the restriction of E to the fixed point
set Y . In other words, at each fixed point we should add a constraint given by the
local equation of the fixed point set. In our case the complement Y −{A1, A2, A3}
consists of three arcs Yi on each of which the triangle inequality for lengths li
becomes an equality. Thus we have to add a constraint of the form li + lj = lk.
Together with the isoperimetric constraint li + lj + lk = L this implies that
lk = L/2 and li = L/2 − lj . Thus we are left with the optimization problem for
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E as a function of one variable li. It is elementary to verify that it has exactly
one solution in Yi given by the configuration τi.

Summing up, our considerations imply that we have found the shapes of all
critical points of E in the isoperimetric setting. In fact, one can verify that E is
non-degenerate (Morse) function, which yields the following result.

Theorem 1. Function E on X is non-degenerate and has exactly five critical
points in X: two minima with the sides given by formulas (2) and three saddles-
points at the aligned configurations Ti.

The types of critical points can be found by computing the so-called bordered
hessian of E defined in [6]. Direct computation shows that the bordered hessian
is non-degenerate at all critical points so results of [6] imply that E is indeed a
Morse function. The indices of bordered hessian are readily found using Sylvester
rule and the indices of critical points of E can be found using results of [6], which
completes the proof of Theorem 1.

It is instructive to verify Morse formula for the Euler characteristic in this
context. Notice that X is diffeomorphic to sphere S2 with three deleted points
corresponding to two coinciding positions of point charges. So the Euler charac-
teristic of X equals −1, which coincides with the sum of Morse indices of the five
critical points of E in X.

One can also approach Morse formula in a different way. Function E has
isolated poles at three deleted points so one can modify function E in small
neighbourhoods of these points so that E has non-degenerate maxima at these
points. So their Morse indices are equal to two and the Morse indices of the
modified energy function sum up to two which is the Euler characteristic of
Per3(L). Thus our results are consistent with the topological picture.

It is now easy to obtain explicit formulas for all critical values of E. for the
reason of space, here we only present the value of absolute minimum which will
be used below.

Corollary 1. The absolute minimum of E in the above setting is:

Em(Q) =
(
√
q1q2 +

√
q2q3 +

√
q1q3)

2

L
. (3)

In particular, if all charges are equal to q then

Em(q) =
9q2

L
.

In the next section we present an explicit solution of DPE in isoperimetric
setting.

2. Stationary charges in isoperimetric setting

Suppose we are given three lengths of the sides li = li(T ) of triangle T cor-
responding to a critical configuration. To solve DPE we need to find values of
point charges such that they are in rest in this configuration. Without restricting
generality we may fix the sum S of the sought stationary charges. Reversing the
arguments used in the above application of Lagrange method we see that to solve
DPE one may consider formulas (2) as a system of linear equations for charges
qi. This system admits an explicit solution, which yields the following result.
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Theorem 2. For given lengths li of the sides of triangle T and prescribed
sum of stationary charges S, the stationary charges for triangle T are given by:

q1 =
Sl22l

2
3

l21l
2
2 + l22l

2
3 + l21l

2
3

, q2 =
Sl21l

2
3

l21l
2
2 + l22l

2
3 + l21l

2
3

, q3 =
Sl21l

2
2

l21l
2
2 + l22l

2
3 + l21l

2
3

. (4)

Corollary 2. The absolute minimum of E in the above setting is:

Em(S) =
S2Ll21l

2
2l

2
3

(l21l
2
2 + l22l

2
3 + l21l

2
3)

2
. (5)

In particular, if all side-lengths are equal to L/3 then

Em(S) =
S2

L
.

Thus we have given explicit solutions of the direct and inverse problems of
electrostatics for three charges in the isoperimetric setting. In addition to DPE
and IPE it is possible to investigate a related problem which seems interesting
(at least) from a purely mathematical point of view. Namely, for given n ∈
Z+, Q > 0, L > 0, one searches for positive numbers q1, . . . , qn satisfying the
condition

∑
qi = Q, and n-point configurations P of perimeter L in the plane

such that Q@P configuration is a critical point of Coulomb energy in this setting.
In other words, in this setting, which we call the E(n;Q,L)-problem, one has
to solve a constrained optimization problem with target function E(Q@P ) and
two constraints described above. In other groups, two groups of arguments of
E(Q@P ) are considered on equal footing.

It turns out that, for n = 3, one can easily find the absolute minimum of E
in this setting. Namely, the equations provided by Lagrange multipliers method
imply that all charges should be equal. From the above results immediately
follows the critical configurations are the regular triangle with both orientations
and line segment of length L/2 with the third charge at the middle. Comparing
the values of Coulomb energy given in Corollary we arrive at the following result.

Theorem 3. For any Q > 0, L > 0, the absolute minimum of electrostatic
energy in E(3;Q,L)-problem is attained at a regular triangle with the side L/3
with equal charges Q/3 placed at its vertices.

Analyzing the proof of this result it becomes intuitively plausible that a sim-
ilar result holds true for E(n;Q,L)-problem with arbitrary n.

Conjecture 1. For any n ∈ Z+, Q > 0, L > 0, the absolute minimum of
electrostatic energy in E(n;Q,L)-setting is attained at a convex regular polygon
with. the side L/n with equal charges Q/n placed at its vertices.

Attempts to prove this conjecture encounter conceptual problems. The point
is that in E(n;Q,L)-setting, in addition to convex regular and aligned configu-
rations, there exist other critical configurations and it is not quite clear how to
find all of them. As was shown in a recent paper [7], for n ≥ 5, all regular n-
pointed stars with various rotation numbers and charges Q/n at the vertices are
also equilibrium configurations in E(n;Q,L)-setting. The electrostatic energies
of star-like configurations can be explicitly calculated using results of [2], [7] and
one sees that these values are bigger than at the regular convex configuration.
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This supports Conjecture 1 but does not give a rigorous proof since we do not
have a complete list of equilibrium configurations in E(n;Q,L)-setting. It also
seems worthy of noting that [7] gives some evidence in favour of the following
general conjecture.

Conjecture 2. For any n ∈ Z+, Q > 0, L > 0, the following is a complete
list of the shapes of critical configurations in E(n;Q,L)-setting: convex regular,
aligned with equal charges and all possible regular n-pointed stars with equally
charges vertices.

If Conjecture 2 holds true then Conjecture 1 will follow from the comparison of
critical values outlined above. It is interesting to investigate non-degeneracy and
Morse indices of star-like equilibrium configurations in E(n;Q,L)-setting. The
results and approach of the present paper suggest a lot of other open problems
and generalizations part of which are given in the last section.

Concluding remarks

It seems worth noting that the problems studied above suggest some purely
mathematical developments and physical interpretations. The most obvious
mathematical problem is to generalize our results to the cases with more than
three charges. Such generalizations are non-obvious already in the case of four
charges. It can be shown that not all configurations of four points can be rep-
resented as Coulomb equilibria in isoperimetric setting. So one can search for a
geometric characterization of Coulomb equilibria of n-point configurations and
then try to obtain explicit formulas for stationary charges. Results of [5], [8] sug-
gest that these problems may be more easy for concyclic configurations having
all points on the same circle.

In general, for four charges, a relevant configuration space Per4(L) is homeo-
morphic to CP2. The latter space is four-dimensional and, unlike to Per3(L), its
topological structure is hard to describe in a visual way. However, topology still
yields some information which is useful in our problem. In particular, it suggests
existence of many saddle-points since E has ten poles in Per4(L) corresponding to
coincident vertices of quadrilateral (six from pairwise coincidences and four from
triple coincidences). For example, for four equal charges one can easily construct
the two minima (regular squares) and six saddles having the shapes of aligned
equilibrium configurations. Under assumption that E is a Morse function, the
Morse formula for the Euler characteristic implies that there should exist at least
four other critical points, whose shapes and sizes remain unclear.

Another purely mathematical research perspective is to obtain analogs of our
results for other central forces, specifically, for logarithmic potential. The ion
traps corresponding to aligned configurations with logarithmic interaction have
been studied for a long time, starting with a seminal paper of Stiltjes [9]. So one
may try to use known results to shed some light on equilibria in isoperimetric
setting.

Among the arising topics with physical flavour we would like to mention
investigation of DPE and IPE in the setting of elastic contour obeying Hooke’s
law started in [10]. For n equal charges, one can compute the critical energies
using results of [2] and [10]. For non-equal charges the problem is practically
unexplored.
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Physical considerations also suggest several scenarios involving dynamical
aspects of the problem. Since configuration space Per3(L) has a natural Rie-
mannian structure one may consider the gradient flow of Coulomb energy. For
example, one can try to calculate the length of the arc connecting two points on
the same gradient trajectory and compare it with the length of minimal geodesics
joining these two points. One can also try to compute the length of isoenergetic
(level) curves of Coulomb energy in Per3(L).

Another interesting topic suggested by the third named author is to study
the evolution of equilibrium configurations after eliminating one of the sides of
equilibrium triangle. Informally, this can be described as “cutting” or “burning
off” one of the sides. One can obtain explicit formulas describing the dynamics
of this process. In particular, using momentum and energy conservation it is
possible to find the maximal speed of the opposite vertex and estimate the time
of achieving the aligned equilibrium configuration. The arising formulas and
computations will be presented elsewhere.

Finally, our results suggest some problems in the spirit of Coulomb control
discussed in [7]. Namely, our results show that one can connect any two given
points A1, A2 in Per3(L) using the solution of DPE for the linear homotopy
connecting the stationary charges of A1 and A2. Using the exact formulas for
solutions to DPE and IPE one can try to compute the length of the path arising
in this way. It is also interesting to study the problem of optimal control of
equilibrium configurations in terms of their stationary charges. Similar problems
with more than three charges yield a vast and unexplored topic far beyond the
scope and aims of the present paper.
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